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Abstract 
 

With the increasing needs of the Canadian Forces (CF) for systems interoperability, 
techniques and tools have to be developed in order to build systems of systems (SoS), 
i.e., systems whose components are themselves independent systems from an 
operational and managerial viewpoint. However, before existing systems can 
interoperate, their architectures first need to be recovered and comprehended. This 
technical memorandum describes the functional decomposition of an integrated suite 
of tools to assist with software system architecture recovery and comprehension. It 
was designed based on the requirements already identified in the scientific literature 
for comprehension tools, on a qualitative study conducted using existing tools, as well 
as on a state-of-the-art survey on system architecture recovery and comprehension. 
Following the conception of this functional decomposition, a prototype implementing 
it will be developed into an integrated development environment (IDE) to assist the CF 
in recovering and comprehending the architecture of already existing software 
systems.  

Résumé 
 

Avec les besoins croissants des Forces canadiennes (FC) en matière d’interopérabilité 
de systèmes, des techniques et outils ont besoin d’être développés afin de construire 
des systèmes de systèmes (SdS), c’est-à-dire des systèmes dont les composantes sont 
elles-mêmes des systèmes indépendants d’un point de vue opérationnel et de gestion. 
Cependant, avant que des systèmes existants puissent interopérer, leurs architectures 
ont d’abord besoin d’être récupérées et comprises. Le présent mémorandum technique 
décrit la décomposition fonctionnelle d’une suite d’outils intégrés pour aider à la 
récupération et la compréhension d’architectures de systèmes logiciels. Elle a été 
conçue en se basant sur les exigences déjà identifiées dans la littérature scientifique 
pour les outils de compréhension, sur une étude qualitative menée en utilisant les outils 
existants, ainsi que sur une revue de l’état des connaissances portant sur la 
récupération et la compréhension d’architectures de systèmes. À la suite de la 
conception de cette décomposition fonctionnelle, un prototype l’implantant sera 
développé dans un environnement de développement intégré (EDI) afin d’aider les FC 
à récupérer et comprendre les architectures de systèmes logiciels déjà existants.  
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Executive Summary 
 

Over the years, the needs of the Canadian Forces (CF) for systems interoperability 
have significantly increased.  As the CF demand greater systems interoperability, their 
software architects need techniques and tools to comprehend the architecture of 
existing systems before making them interoperate in order to build systems of systems 
(SoS). Although some requirements have already been identified in the scientific 
literature for comprehension tools, these are not specifically targeted for the 
understanding of software systems at the architectural level. This technical 
memorandum describes the functional decomposition of an integrated suite of tools to 
assist with the recovery and comprehension of software systems architectures. It was 
designed by the members of the Opening up Architectures of Software-Intensive 
Systems (OASIS) project. It is based, to some extent, on the requirements one can find 
in the open literature. It is also based on the results of a qualitative study conducted to 
assess the value added by existing analysis tools on the understanding of participants 
performing comprehension tasks, at the architectural level, on large scale military 
applications. Finally, it takes into consideration the findings contained in a state-of-
the-art survey on system architecture recovery and comprehension that was carried out 
as a previous phase of the OASIS project.  

The functional architecture presented in this technical memorandum consists of the 
following ten subsystems:  

Repositories  Store persistently the facts extracted about a system under study.  

Data Access Provides an interface between the meta-model used by the Information 
Management Services subsystem and the Repositories.  

Information Management Services Provides a meta-model to facilitate the 
integration of information producers and consumers as well as the discovery of 
available information.  

Fact Extraction Fundamental step of architecture recovery and comprehension that 
consists of finding pieces of information about a system under study.  

Analysis Allows to separate a system into its constituent parts.  

Synthesis Provides the capacity to combine several extracted facts to form a new 
whole at a higher level of abstraction.  

Visualization Uses graphical techniques to make a software system visible through 
the display of its artifacts and behavior.  

Documentation Generation Produces system documentation at different levels of 
abstraction from the extracted facts.  
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Comprehension Process Provides guidance to users in recovering and 
comprehending the architecture of a software system.  

Graphical User Interface Allows users to interact with and control the architecture 
recovery and comprehension tool in a highly visual manner.  

The above functional decomposition is a way to synthesize the knowledge of the 
OASIS research group on architecture recovery and comprehension. It serves as a 
reference model which is destined to evolve with the advancement of the group’s 
knowledge in this research area and orient its future work.  

Following the conception of the functional decomposition previously described, a 
prototype implementing a subset of it will be developed into an integrated 
development environment (IDE) to assist the CF in recovering and comprehending the 
architecture of already existing software systems. Ideally, once this prototype is 
developed, another study, similar to the qualitative study previously conducted, but 
with an improved design and set of comprehension tasks, should be performed. Its 
objective would be to assess the added value of the OASIS architecture recovery and 
comprehension prototype on the understanding of participants.  

 

Charland, P., Ouellet D., Dessureault, D., Lizotte M. 2007. Opening up architectures of 
software-intensive systems: A functional decomposition to support system 
comprehension. DRDC Valcartier TM 2006-732. Defence R&D Canada - Valcartier.  
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Sommaire 
 

Au cours des années, les besoins des Forces canadiennes (FC) en matière 
d’interopérabilité de systèmes ont augmenté de façon significative. Alors que les FC 
exigent plus d’interopérabilité entre les systèmes, leurs architectes logiciels ont besoin 
de techniques et d’outils pour comprendre l’architecture des systèmes existants avant 
de les faire interopérer pour construire un système de systèmes (SdS). Bien que des 
exigences aient déjà été identifiées dans la littérature scientifique pour des outils de 
compréhension, celles-ci ne sont pas expressément ciblées pour la compréhension de 
systèmes logiciels sur le plan de l’architecture. Le présent mémorandum technique 
décrit la décomposition fonctionnelle d’une suite d’outils intégrés pour aider à 
récupérer et comprendre les architectures de systèmes logiciels. Celle-ci a été conçue 
par les membres du projet Ouverture d’Architectures de Systèmes Informatisés 
Significativement (OASIS). Elle est basée, jusqu’à un certain point, sur les exigences 
qui peuvent être trouvées dans la littérature ouverte. Elle est aussi fondée sur les 
résultats d’une étude qualitative qui a été menée afin d’évaluer la valeur ajoutée 
d’outils d’analyse sur la compréhension de participants accomplissant des tâches de 
compréhension sur des applications militaires de grande taille, sur le plan de 
l’architecture. Finalement, cette décomposition fonctionnelle tient compte des 
conclusions contenues dans une étude de pointe sur la récupération et la 
compréhension d’architectures de systèmes qui a été menée lors d’une phase 
précédente du projet OASIS.  

L’architecture fonctionnelle présentée dans ce mémorandum technique est composée 
des dix sous-systèmes suivants :  

Référentiels Enregistrent de façon persistante les faits qui ont été extraits à partir du 
système à l’étude.  

Accès aux données Fournit une interface entre le méta-modèle utilisé par le sous-
système Services de gestion de l’information et les Référentiels.  

Services de gestion de l’information Fournit un méta-modèle afin de faciliter 
l’intégration de producteurs et de consommateurs d’information ainsi que la 
découverte d’information disponible.  

Extraction de faits Étape fondamentale de la récupération et la compréhension 
d’architectures qui consiste à trouver des fragments d’information au sujet d’un 
système à l’étude.  

Analyse Permet de séparer un système en ses parties constituantes.  

Synthèse Fournit la capacité de combiner plusieurs faits qui ont été extraits pour 
former un nouveau tout à un niveau d’abstraction supérieur.  
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Visualisation Utilise des techniques graphiques afin de rendre visible un système 
logiciel par l’entremise de l’affichage de ses artefacts et de son fonctionnement.  

Génération de documentation Produit la documentation du système à différents 
niveaux d’abstraction à partir des faits qui ont été extraits.  

Processus de compréhension Guide les usagers pour récupérer et comprendre 
l’architecture d’un système logiciel.  

Interface usager graphique Permet aux usagers de contrôler et d’interagir avec 
l’outil de récupération et de compréhension d’architectures de manière très visuelle.  

La décomposition fonctionnelle ci-dessus est une façon de synthétiser la connaissance 
du groupe de recherche OASIS en récupération et compréhension d’architectures. Elle 
sert de modèle de référence qui sera appelé à évoluer avec l’avancement des 
connaissances du groupe dans ce domaine de recherche ainsi qu’à orienter ses travaux 
futurs.  

Suite à la conception de la décomposition fonctionnelle décrite précédemment, un 
prototype implantant un sous-ensemble de celle-ci sera développé dans un 
environnement de développement intégré (EDI) afin d’aider les FC à récupérer et 
comprendre les architectures de systèmes logiciels déjà existants. Idéalement, une fois 
que ce prototype sera développé, une autre étude, similaire à l’étude qualitative 
précédente, mais avec une conception et une série de tâches de compréhension 
améliorées, devrait être menée. Son objectif serait d’évaluer la valeur ajoutée du 
prototype de récupération et de compréhension d’architectures OASIS sur la 
compréhension des participants.  

 

Charland, P., Ouellet D., Dessureault, D., Lizotte M. 2007. Opening up architectures of 
software intensive-systems: A functional decomposition to support system 
comprehension. DRDC Valcartier TM 2006-732. R&D pour la défense Canada - 
Valcartier.  
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1. Introduction 
 

Over the years, the needs of the Canadian Forces (CF) for systems interoperability 
have significantly increased. For example, to improve the automation of the 
Command, Control, Communications, Computers, Intelligence, Surveillance, and 
Reconnaissance (C4ISR) process, a large number of software intensive systems must 
interact together to handle a massive amount of information. The CF also require 
systems interoperability when they collaborate with allied nations to achieve common 
objectives.  

As the CF demand greater systems interoperability, their software architects need 
techniques and tools to understand the architecture of existing systems and make them 
interoperate in order to build a system of systems (SoS). A SoS is an assemblage of 
components which individually may be regarded as systems and which possess two 
additional properties: operational and managerial independence of the components [1]. 
Each component system must be able to operate independently if the SoS is 
disassembled. Furthermore, even though the component systems are separately 
acquired and integrated, they maintain a continuing operating existence independent of 
the SoS. An example of a SoS is a system built for a coalition operation, where each 
participating nation brings its own operational planning system.  

Before existing systems can interoperate, their architectures first need to be 
understood. The architecture of a system can be defined as the structure of its 
components, their interrelationships, as well as the principles and guidelines governing 
their design and evolution over time [2]. However, understanding the architecture of 
systems can prove to be quite a complex task. These systems have most probably 
undergone several code revisions without a real concern about maintaining their 
architectural design documentation up to date [3]. As a result, architecture recovery 
has to be performed to regenerate coherent abstractions and guide architects during 
their comprehension task. Architecture recovery can be described as the process of 
retrieving up-to-date architectural information from existing source code artefacts. The 
rational of system architectural recovery is to provide reasoning behind the software 
architecture or high-level organization of a system.  

To support the effort of developing methodologies, techniques, and tools needed for 
the recovery and comprehension of existing systems architecture, the SoS section of 
Defence Research and Development Canada (DRDC) Valcartier started a project 
called Opening up Architectures of Software-Intensive Systems (OASIS) [4]. Its 
objective is to develop technical solutions in order to reduce the time needed to 
comprehend systems to be integrated into a SoS.  

In a previous phase of the OASIS project, a state-of-the-art survey [5] of the current 
techniques and tools for architecture recovery and comprehension was carried out. 
Following this survey, a qualitative study was conducted to assess the added value of a 
selected subset of the tools previously identified on the understanding of participants 
performing high-level comprehension tasks on large-scale military systems [6].  

DRDC Valcartier TM 2006-732 1 
 
  
 



  
 

The present technical memorandum describes the functional decomposition of an 
integrated suite of tools for architecture recovery and comprehension. It will address 
the limitations of the existing tools which were identified in the state-of-the-art survey 
and as part of the qualitative study. The remainder of this technical memorandum is 
organized as follows: Section 2 presents an overview of the comprehension models. In 
Section 3, the factors affecting comprehension are provided. In Section 4 and 5, the 
implications of cognitive models on tool requirements are discussed. Section 6 
presents the limitations of existing tools for architecture recovery and comprehension. 
In Section 7, the different subsystems of the OASIS functional architecture are 
described. Finally, Section 8 provides conclusions and future work.  
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2. Cognitive Models of Program Comprehension 
 

Several studies have been conducted to determine which strategies programmers use 
when trying to understand unfamiliar code. The results have demonstrated that 
different cognitive models are applied to create mental representations of programs 
under examination. But before these models can be reviewed, their terminology first 
needs to be defined.  

2.1 Concepts and Terminology 

A programmer’s mental representation of a program under study is referred as the 
mental model [7]. The cognitive processes and temporary information structures used 
by the programmer to form the mental model are described by a cognitive model [7].  

Programming plans are generic fragments of source code which represent typical 
programming scenarios. An example of a programming plan is a sorting algorithm [8]. 
Delocalized plans are pieces of source code which are conceptually related, but 
physically located in non-contiguous parts of a program [9]. An example of a 
delocalized plan is the “retrieve-a-record & process-the-record” plan in a database 
management system. The first part of the plan is located in the SEARCH routine, while 
the second part is located, non-contiguously, in the DELETE routine [9].  

Beacons are familiar features in the source code which act as cues to the presence of 
certain structures [10]. An example of a beacon is the swapping of two variables in a 
sorting algorithm. Rules of programming discourse are the programming conventions 
and algorithm implementations [8].  

2.2 Cognitive Models 

Following is an overview of some of the influential cognitive models in program 
comprehension as reviewed by Storey et al. [11].  

2.2.1 Bottom-Up 

Shneiderman [12,13] proposed that programs are understood bottom-up, i.e., 
by first reading the source code and then mentally grouping lower level 
software artifacts into higher level abstractions that are more meaningful. 
These abstractions are further aggregated until a high level comprehension of 
the program is obtained. The cognitive framework of Shneiderman and 
Mayer [12] makes a distinction between the syntactic and semantic 
knowledge of a program. The syntactic knowledge is language dependent and 
relates to the statements of a program, while the semantic knowledge is 
language independent and is formed in progressive layers until a mental 
model of the application domain is built.  
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In [14], Pennington also observed that programmers use a bottom-up strategy 
when trying to understand a program. They first produce a control flow 
abstraction, referred as the program model, which represents the sequence of 
operations of the program. This model is generated by grouping source code 
microstructures (statements, predicate statements, dependencies) into 
macrostructures (source code structure abstractions) and then by cross-
referencing them. After the program model has been assimilated, the situation 
model is generated. This model incorporates knowledge about the data flow 
and the functional abstractions, e.g., the program goals hierarchy.  

2.2.2 Top-Down 

Brooks formed a theory that programs are understood in a top-down manner, 
where the knowledge about the application domain is first reconstructed and 
then mapped on the source code [10]. This process starts with the formulation 
of a hypothesis about the general nature of the program. This global 
hypothesis is then refined into a hierarchy of secondary hypotheses, which are 
evaluated in a depth-first manner. The validation of rejection of a hypothesis 
depends heavily on the presence or absence of beacons [10].  

Soloway and Ehrlich [8] observed that a top-down strategy is used when the 
source code or type of source code is familiar. They also noted that 
experienced programmers use beacons, programming plans, as well as rules 
of programming discourse in order to decompose goals and plans to a lower 
level. Furthermore, it was observed that delocalized plans complicate 
program comprehension, as they involve finding causal interactions between 
non-contiguously located pieces of source code.  

2.2.3 Knowledge-Based 

Letovsky [15] suggested that programmers are opportunistic processors, 
capable of understanding programs using either a bottom-up or top-down 
approach, depending on the cues available. His theory has three components: 
a knowledge base, which encodes the programmer’s expertise and knowledge 
about the application; a mental model, which represents the programmer’s 
current understanding of the program; and an assimilation process, which 
explains how the mental model evolves using the knowledge base and 
information about the program.  

Inquiry episodes are an essential part of the assimilation process. During such 
an episode, a programmer asks a question, forms a hypothesis, and searches 
through the source code and documentation to validate or reject the 
hypothesis. Inquiry episodes often happen as a result of delocalized plans.  
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2.2.4 Systematic and As-Needed 

In [16], Littman et al. observed programmers enhancing a personnel database 
program. They noted that the programmers either read the source code 
systematically, tracing the control and data flow dependencies in order to 
acquire a general understanding, or used an as-needed approach, focusing 
only on the source code related to the task to achieve. The subjects using a 
systematic approach gained information about the structure of the program 
and the interactions between its components at run-time. The ones who used 
an as-needed approach only acquired static knowledge, resulting in a weaker 
mental model compared to the one of the other subjects. They also made 
more errors, as they did not identify the dynamic interactions between the 
components.  

Soloway et al. [9] combined these two theories as macro-strategies in order to 
understand programs at a more global level. Using this strategy, the 
programmer traces the flow dependencies for the whole program and 
performs simulations as the source code and documentation are read. 
However, this method is not applicable for programs of considerable size. In 
the more commonly used approach, programmers examine only what they 
consider relevant. The drawback of this approach is that more mistakes can 
be made, since important interactions can be missed.  

2.2.5 Integrated Metamodel 

Based on the results of experiments, Von Mayrhauser and Vans combined the 
previous approaches into a single metamodel [17]. They suggested that 
understanding is built at several levels of abstractions, by freely switching 
between the different comprehension strategies. Their model is composed of 
four components. The first three detail the comprehension processes used to 
create the mental representations at different levels of abstractions. The fourth 
component describes the knowledge base used to carry out the 
comprehension process. In their integrated metamodel [17]:  

• The top-down approach is invoked as an as-needed strategy, when the 
source code or programming language is familiar. It uses the domain 
knowledge as a starting point for the formulation of hypotheses.  

• The program model, which is a control flow abstraction, is invoked when 
the source code and application are completely unfamiliar.  

• The situation model, which describes the data flow and functional 
abstractions in a program, is developed after a partial program model has 
been formed using systematic or opportunistic strategies.  

• The knowledge base contains the information required to build these 
three cognitive models. It stores the programmer’s current knowledge as 
well as the one acquired and inferred during the comprehension process.  
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3. Factors Affecting Comprehension 
 

The wide variety of cognitive models discussed previously stems from the fact that 
certain factors will affect how a programmer tackles a comprehension task [18, 19].  
These factors are the program under study, the characteristics of the programmer, as 
well as the comprehension task to achieve. These factors are discussed next, as 
summarized by Storey [7].  

3.1 Program Characteristics 

As one would normally expect, programs which are well designed and documented are 
easier to understand than badly designed and documented ones. However, the 
programming language in which an application is written also affects comprehension, 
as was shown is Pennington’s experiment [14].  

Object-oriented languages are often perceived to offer a more natural correspondence 
with real world problems, due to the inheritance and association relationships [20]. 
However, others argue that object-oriented programs are difficult to understand, as 
they involve a very strong delocalization of plans: a plan may be distributed through 
several procedures, each attached to a different class [20].  

3.2 Individual Programmer Differences 

With experience, programmers recognize which strategy is the most efficient for a 
given program and comprehension task [11]. Détienne also observed that experienced 
programmers make more use of external devices as memory aids [20]. Furthermore, in 
[21], Vessey noted that they tend to reason about programs according to both 
functional and object-oriented relationships, as well as consider algorithms, while 
programmers with less experience tend to focus on objects. These observations 
highlight the fact that program comprehension tools should enhance or ease the 
programmer’s preferred strategies, rather than impose a fixed one, which may not 
always be suitable [11].  

Although experience influences the comprehension strategy adopted by a programmer, 
it is not the only factor to consider when elicitating requirements for a supporting tool. 
For example, programmers’ ability and creativity, which cannot simply be measured 
by their experience, also affect how they will address a comprehension task [7].  

3.3 Task Variability 

Program comprehension is not an end goal by itself. On the contrary, it is the 
necessary first step towards the realization of other objectives, such as correcting a 
fault, reusing source code, or adding functionalities to a software system. The type and 
scope of the end objective will influence the comprehension process followed by a 
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programmer. For example, a simple task might only require understanding a small 
portion of source code, while a more complex one might necessitate taking into 
account global interactions. As a result, the programmer will have to acquire an in-
depth comprehension of the causal relationships for the whole program [7].  

In [14], Pennington explained that when a programmer has to perform a task which 
necessitates recall and comprehension, he or she will form a program model, i.e., the 
sequence of operations of the program. In the case the task requires making a 
modification to a program, the programmer will form a situation model, which 
incorporates knowledge about the data flow and the functional abstractions.  

A task which involves the reuse of source code requires that a programmer first 
understands the problem to solve. Then, a suitable solution has to be retrieved from the 
existing source code and adapted to the current problem. The mapping of the problem 
to the solution is often done using analogical reasoning [20] and might involve 
iterative searching through many possible solutions [7].  
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4. Cognitive Models and Tool Implications 
 

In this section, the requirements that comprehension tools should implement are 
presented in general terms. It should be noted that they should be fine-tuned for the 
specific settings in which the tool implementing them is deployed. These 
requirements, as reviewed by Storey [7], are based on the cognitive models introduced 
in Section 2.  

4.1 Browsing Support 

Browsing allows programmers to navigate through the source code, according to the 
dependencies between the different software elements, such as the definitions of 
variables, methods, classes and their use. Since definitions and uses may be distributed 
over distant parts in the source code, browsing accelerates the navigation and lessens 
the effort needed for software comprehension [22].  

Both the top-down and bottom-up comprehension models necessitate browsing 
support. On the one hand, the top-down cognitive model requires browsing the source 
code of an application, by starting with the high-level abstractions or concepts and 
going down to the lower level details, using the presence of beacons. On the other 
hand, bottom-up comprehension necessitates tracking the control and data flow chains 
in order to form both the program and situation models.  

For the integrated metamodel, both top-down and bottom-up browsing should be 
supported, as the strategy used depends on the available cues. Also, having both 
breadth-first and depth-first browsing support available should alleviate the difficulties 
posed by delocalized plans introduced by object-oriented languages.  

4.2 Searching 

While browsing is an exploratory strategy, without a fixed endpoint and relatively 
unstructured, searching is a planned activity with a specific goal. An example of 
searching is to look for pieces of source code, as in the case of a code reuse task, or 
when enquiring about the role of a variable, method, or class in a program.  

4.3 Multiple Views 

A comprehension tool should provide different views of a program under study. It 
should offer static views, which show the structure of a system, in particular, the kinds 
of things that exist, e.g., classes, their internal structures, and their relationships to 
other things [23]. To complement the static views, dynamic views should also be 
provided. These views show the behavior of a system, such as the objects and threads 
that exist at run-time, as well as the method invocations between them.  
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4.4 Context-Driven Views 

In addition to provide multiple views, the tool should also offer the possibility to select 
the view which is the most appropriate to the current context. For example, in the case 
of an object-oriented program, it is generally more suitable to display the inheritance 
hierarchy as the initial view. However, in the case the structure of the latter is rather 
flat, the user may prefer to first view the call graph [7].  
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5. Tool Requirements Explicitly Identified 
 

The previous section enumerated in general terms the functional requirements a 
program comprehension tool should have. In this section, specific requirements for 
comprehension tools are listed. This list comes from [7], in which the efforts 
conducted by several researchers are surveyed.  

5.1 Biggerstaff 

In [24], Biggerstaff et al. mention that the main challenge in software understanding is 
the concept assignment problem, i.e., the mapping of source code elements to their 
corresponding requirements. Even though automated techniques can assist in the 
location of programming concepts and features in the source code, the difficulty comes 
from automatically locating human oriented concepts. According to Biggerstaff, the 
most important functional requirements for comprehension tools are queries, graphical 
views, and hypertext.  

5.2 Von Mayrhausser and Vans 

Following their research on the integrated metamodel, Von Mayrhausser and Vans 
determined basic information needs for reverse engineering tasks [17]. They also 
suggested some functional requirements to satisfy them, according to the different 
models [17]:  

• Top-Down Model: On-line documents with keyword searching capacities; call 
graph pruning based on specific categories; smart differencing features; browsing 
of locations history; entity fan-in.  

• Situation Model: Complete list of domain sources, including non source-code 
based; visual representations of most important domain functions.  

• Program Model: Pop-up declarations; online cross-referencing reports; function 
counting.  

5.3 Singer and Lethbridge 

In [25], Singer et al. observed the work practices of software engineers in a company. 
Their study was conducted at the individual, group, and company-wide levels. 
Following their observations, they recommended that a tool should support “just-in-
time comprehension of source code.” This recommendation was based on the fact that 
engineers tend to forget quickly the specificities of a program part when moving to 
another one. This constrained them to comprehend again this part when it was needed 
by the task they had to accomplish. To support just-in-time comprehension, a tool 
should offer the following functional requirements [25]:  
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• The capacity to search through the source code by either specifying names or 
patterns.  

• The capacity to display the pertinent attributes of the elements retrieved by a 
search as well as the relationships between them.  

• Features to store persistently the searches and problem-solving sessions and 
support their navigation.  

These requirements were implemented in the tkSee tool, which became used by the 
company's engineers.  

5.4 Erdös and Sneed 

Following many years spent in the industry doing maintenance and reengineering 
work, Erdös and Sneed implemented a tool to support the maintenance of applications 
for which programmers had an incomplete understanding. The tool provided answers 
to the following questions, proposed by Erdös and Sneed in such situations [26]:  

1. Where is a partial subroutine/procedure invoked?  

2. What are the arguments and results of a function?  

3. How does control flow reach a particular location?  

4. Where is a particular variable set, used or queried?  

5. Where is a particular variable declared?  

6. Where is a particular data object accessed?  

7. What are the inputs and outputs of a module?  

It should be noted that today’s IDEs (e.g., Eclipse [27], Visual Studio 2005 [28]) offer 
functionalities which provide answers to most of the above questions.  
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6. Limitations of Existing Tools 
 

As mentioned in the introduction, in a previous phase of the OASIS project, a state-of-
the-art-survey on the current techniques and tools for architecture recovery and 
comprehension was carried out [5]. The limitations of the tools surveyed are discussed 
next.  

6.1 Multi-Language Support 

Source code based architecture recovery is derived from parsing which provides static 
structural information about the source code to be analyzed. There exist several 
techniques that can be applied on the parsed information to extract further 
dependencies in the source code to support the architecture recovery and 
comprehension process. However, most of the parsers of the currently existing tools 
support systems written in a single programming language [5].  

6.2 Static Analysis Support 

Analytical support is essential to comprehend source code and implementation 
dependencies. However, the vast majority of the architectural recovery tools surveyed 
lack detailed analytical support. Their analysis functionalities are mainly static and 
limited to standard high-level dependencies and metrics. According to the author of 
the survey, the integration of additional techniques, such as concept analysis, would be 
beneficial for architecture comprehension. Furthermore, the extraction, grouping, and 
clustering of the available information from knowledge bases would also benefit from 
a more detailed analysis of the dependencies among the different source code 
components [5].  

6.3 Dynamic Analysis Support 

An increasing part of today’s legacy software systems are object-oriented and/or 
distributed [5]. The use of constructs such as inheritance, polymorphism, and dynamic 
binding results in the fact that the exact behavior of a system is only known at run-
time. Under these circumstances, static analysis alone is insufficient to recover and 
comprehend the architecture of a subject system. It has to be complemented by 
dynamic analysis. Unfortunately, most current architecture recovery tools focus on 
static analysis of source code, which therefore limits their applicability for the 
architectural recovery of object-oriented and distributed legacy systems [5].  

6.4 Dynamic Visualization and Abstraction 

The graphical descriptions of software architectures generated by current tools often 
focus on static calls and data relationships gathered by parsing the source code. These 
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types of architecture graphs can exhibit extremely high connectivity and possess little 
contextual information with respect to the nature of the relationships between 
components [5]. Dynamic visualization is useful to understand higher-level system 
behavioral characteristics that cannot be determined from static architectural views. 
Some existing tools support dynamic visualization and structure querying, but at the 
object level. Therefore, the visualizations they provide are hard to scale and interpret 
for large and distributed applications [5].  

6.5 Domain Knowledge 

The last limitation that was identified in the state-of-the-art-survey is that the current 
tools do not offer functionalities to incorporate domain and user knowledge about a 
software system. Such knowledge is required to reconstruct and understand an 
application at the architectural level, as it allows mapping source code elements to 
their corresponding operational concepts.  
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7. OASIS Functional Architecture 
 

As mentioned in Section 4, the requirements a comprehension tool should implement 
depend on the specific objectives to be achieved by its users. In the present case, the 
objective of the OASIS project is to reduce the time needed to comprehend systems to 
be integrated into a SoS. Therefore, the technical solutions developed as part of 
OASIS should assist in performing comprehension tasks at the architectural level with 
a focus on systems interoperability.  

Figure 1. OASIS Functional Architecture 

The above figure shows a visual representation of the OASIS functional architecture. 
As indicated, it consists of the following subsystems: Repositories, Data Access, 
Information Management Services, Fact Extraction, Analysis, Synthesis, 
Visualization, Documentation Generation, Comprehension Process, and Graphical 
User Interface. The functionality of each of these subsystems and their related service 
groups are further described in the remaining sections of the present document.  

The OASIS functional decomposition was designed with the goal of recovering and 
comprehending the architectures of military applications written in C++ or Java and 
consisting of more than 1,000 classes. It takes into consideration the requirements for 
comprehension tools identified in Section 4 and 5, as well as the results of the 
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qualitative study conducted by Charland et al. [6]. It also addresses the limitations of 
existing tools outlined in Section 6.  

7.1 Repositories 

In order to understand an existing software system, one needs to have access to 
different types of information. In the course of the comprehension process, additional 
information will also be generated. This information needs to be stored persistently in 
repositories. The OASIS functional architecture contains four such repositories, which 
store respectively the source code, facts, models and diagrams, as well as the 
documents associated with the software system under study. These repositories are 
logical ones and will not necessarily be implemented as databases.  

7.1.1 Source Code 

Most high-level reverse engineering analysis and architecture recovery 
activities are based on the software system source code. It is therefore one of 
the types of information which has to be stored in the repositories. There exist 
different mechanisms to manage source code and its associated files. These 
are described next.  

7.1.1.1    File System 

Using the operating system’s file system to manage source code is the most 
simplistic approach, both in terms of implementation and functionality 
provided. It limits the amount of metadata that can be associated with a 
source code file. The specific metadata elements are determined by the file 
system, but usually consist of fields such as the file owner and the date of the 
last modification. These elements can be used to assist with the 
comprehension of a software system, but this information if often lost when 
the source code is transferred to another computer, as the date of the last 
modification will be set to the date of the copying [29]. This approach is also 
limited by the fact that only the latest version of the source code is stored, as 
the history of changes made to source files is not captured.  

7.1.1.2    Versioning Systems 

Versioning systems such as CVS (Concurrent Versions System) [30] provide 
additional information over the file system approach. As implied by the 
name, they keep track of all changes in a set of files. A complete version of 
the source code is checked-out when needed by a programmer, and later 
checked-in when the work on the copy is completed. Information typically 
stored by versioning systems includes the author of the modification, the date, 
and comments about the revision.  
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The information provided by versioning systems can be useful when trying to 
understand an unfamiliar software system. For example, in [31], the CVS 
history of a repository is analyzed to extract information regarding the nature 
of the collaboration between team members. In [32], the change history is 
used to locate the merging and splitting of files and functions in procedural 
code. The objective is to recover information about the intent of a design 
change. 

7.1.1.3     Integrated Development Environments 

Integrated development environments (IDEs) such as Eclipse [27] can be seen 
as a complementary approach over the previous two, since they can be used 
with both. Although IDEs do not supply additional information to assist in 
understanding an unfamiliar software system, they provide functionalities to 
access its source code. These functionalities can in turn be used by a 
developer implementing a tool for architecture recovery and comprehension.  

In Eclipse, the source code can be imported from a file system or CVS 
repository. Once imported, the Eclipse application programming interface 
(API) can be used to access the source code elements. For example, as part of 
the Java Development Tools (JDT) subproject, Eclipse has a Java model. In 
this model, compilation units, which implement the ICompilationUnit 
interface, represent Java source files. This is illustrated in Figure 2 below.  

 

Figure 2. Eclipse Java Model 
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From the compilation units and using various interfaces (e.g., 
IPackageDeclaration, IImportDeclaration, IType, IField, and 
IMethod), the other elements declared in source files can be accessed, as 
shown in Figure 3. This allows developers implementing architecture 
recovery and comprehension tools to access the different elements of the 
source code.    

 

Figure 3. Eclipse Java Model at the Source Code Level 

7.1.2 Facts 

The Facts repository contains the basic facts about a subject system, at a low 
level of abstraction. These facts are usually extracted using, for example, 
lexical or parser-based tools, in the case of static information, or profiling 
tools for dynamic information. As each tool usually has its own specific data 
schema, the interoperability between tools is limited and often restricted to 
the use of a standard exchange format, such as the Graph eXchange Language 
(GXL), to describe the schema in the case of graph-based tools.  

The Object Management Group (OMG) Architecture-Driven Modernization 
(ADM) Task Force [33] is looking at the above interoperability problem. It 
aims at producing a set of standards to describe information that can be 
extracted from existing systems to support modernisation efforts and facilitate 
interoperability between tools. However, there will always be existing tools to 
be integrated within OASIS that will not follow such a standard when it will 
become available. Therefore, the present functional architecture has a 
mechanism, described in more detail in Section 7.2 and 7.3, to allow existing 
tools to be integrated within OASIS using their own data schema.  
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7.1.3 Models and Diagrams 

This repository stores persistently the diagrams, their models, as well as the 
associated metamodels, that are generated during the software architecture 
recovery and comprehension process. Examples of such diagrams are the 
ones contained in the UML specification. The relationships between a 
metamodel, model, and diagram are explained next and illustrated in Figure 
4.  

A metamodel is an explicit model of the constructs and rules needed to build 
specific models within a domain of interest. For example, in UML, the 
metamodel defines the complete semantics for representing models using 
UML. In the case of a class diagram, the metamodel contains elements such 
as class, property, and operation. A class model would contain 
instances of those elements such as ClassX has PropertyA and 
OperationB, and is a subclass of ClassA. Finally, the class diagram would 
store the graphical location of each of the previous model’s elements.  

 

Figure 4. Relationships between Metamodels, Models, and Diagrams 
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7.1.4 Documents 

The last repository of the OASIS functional architecture contains the 
documents associated with a software system under study, as the 
documentation about a legacy system can help in recovering and 
understanding its architecture. However, very often, the system’s 
documentation is of poor quality and outdated [34]. In such cases, the 
Documentation Generation subsystem described in Section 7.8 attempts to 
derive the documentation from source code.  

7.2 Data Access 

The Data Access subsystem handles the mapping of low level data elements to higher 
level constructs. This supports the goal mentioned in section 7.1.2, i.e., to allow 
different tools to use their own data schema to persistently store information. The 
service groups of the present subsystem provide functionalities to define and transform 
data elements to conform to the data schema formats of the different tools to be 
integrated.  

7.2.1 Data Object Definition 

To allow different tools integrated within OASIS to interoperate, their data 
elements must be compatible. If they all use the same exchange model, such 
as the one described in section 7.3.1, data object definition consists of 
mapping it to the persistence technology used. For example, if a relational 
database is used to persistently store the data elements, a tool such as 
Hibernate [35] could be used to generate the corresponding database schema.  

In the case where the tools to be integrated each have a different exchange 
model, the definition of data objects is more difficult. For example, some data 
elements can be stored in a relational database, while others are contained in 
an eXtensible Markup Language (XML) file. In such circumstances, 
transformation functions must be created to allow mapping between one 
format to another. An example of a tool which performs such transformation 
functions is Altova MapForce [36]. As illustrated in Figure 5 on the next 
page, it allows to visually define mappings between different formats such as 
XML and relational databases, and graphically create the required 
transformation functions.  
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Figure 5. Altova MapForce [36] 

To solve the problem of uniquely identifying information elements 
originating from different tools, the OASIS functional architecture uses the 
concept of Enterprise IDentifier (EID), as defined in [37]. Using this 
approach, each information element is given an identifier of the same size 
that is guaranteed to be unique. This uniqueness is achieved by giving each 
information producer a seed identifier which will form the prefix of the EID. 
When an information element is created, the producer typically concatenates 
its seed identifier with a sequence number to generate the EID. Figure 6 
below, adapted from [37], illustrates the composition of 64-bit long EID.  

1 32 1 32... ... ... ...

32-Bit EID Seed 32-Bit Local Sequence

64-Bit EID

EID Prefix EID Suffix

Figure 6. Enterprise Identifier Composition 

This scheme supports up to 232 (approximately 4.3 billion) information 
producers, which can each produce 232 information elements.  

7.2.2 Marshalling 

Marshalling consists of pulling, from the repositories, information elements, 
packaging them into a data object, and then sending it to the information 
consumer that requested it. The implementation of this functionality is 
usually provided by the tool used for the definition of data objects. For 
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example, Hibernate provides an API to load objects which have been 
persistently stored.  

7.2.3 Unmarshalling 

Unmarshalling is the opposite of marshalling. It consists of separating a data 
object into its constituent information elements and storing them in their 
corresponding repository. As for marshalling, the implementation of this 
functionality is provided by the data mapping technology used.  

7.3 Information Management Services 

Information Management Services are the top level subsystems of the OASIS 
functional architecture infrastructure. The others are the Repositories and Data Access, 
which were previously described in Section 7.1 and 7.2. Information Management 
mostly provides services to integrate a tool within OASIS and use the Repositories and 
Data Access subsystems.  

7.3.1 Exchange Model Definition 

Exchange models are the foundations for the other services provided by the 
functional architecture infrastructure. Before a tool can be integrated within 
OASIS, either by developing it or by reusing an existing one, its exchange 
model must be defined. For example, if a tool generating call graphs would 
have to be incorporated within OASIS, an exchange model similar to the one 
shown in Figure 7 below would first need to be defined.  

NamedElement
+name : String

Package MethodType Parameter0..*0..*
0..*

returnType calls

Class

type

Interface Datatype

 

Figure 7. Exchange Model for a Call Graph 

Once defined, the Data Object Definition service group could then generate 
its corresponding relational model and store it persistently into a database. 
This model could also be used by other subsystems, e.g., Visualization, which 
need to operate on call graphs. Furthermore, other information management 
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services could retrieve and store instances of this exchange model without 
having to deal with the intricacies of the persistence mechanism used.  

7.3.2 Browsing 

Browsing consists of exploring a body of information, based on the 
organization of the collections or scanning lists, rather than by direct 
searching [38]. In the present case, browsing is performed by two kinds of 
actors: users trying to understand an unfamiliar software system and 
developers who want to extend the functionalities of OASIS.  

The information contained in the repositories which is of most interest for the 
developers are the exchange models. When integrating a tool producing 
information in OASIS, a developer would first browse the available exchange 
models to see if there is one which already exists for the information provided 
by the tool. For example, the exchange model displayed in Figure 7 could be 
used by another tool producing call graphs for a different object-oriented 
programming language. For a developer integrating or developing a new 
information consumer, the browsing functionality would also allow to search 
for exchange models providing the information required by the tool.  

In the case of users trying to understand an unfamiliar software system, they 
are rather interested in the actual instances of the information elements stored 
in the different repositories. This functionality can be seen as a basic tool to 
facilitate system understanding when there are no visualization technique 
available for certain types of information. Also, when several users are trying 
to understand the same system in a multi-user environment, browsing can be 
used to explore the information produced by others.  

7.3.3 Querying 

Querying is the process of retrieving information elements from a repository 
matching a set of criteria. An example of a criterion could be the method 
name of an instance of the exchange model displayed in Figure 7. Using 
pseudo-code, this criterion could be written as callgraphmodel.method. 
name, where callgraphmodel is the name of the call graph.  

Multi-criteria querying is used to reduce the amount of information retrieved. 
A multi-criteria example could be the method and package name of an 
exchange model instance. Using pseudo-code again, these criteria could be 
expressed as callgrahmodel.method.name and callgrahmodel. 
package.name.  

22 DRDC Valcartier TM 2006-732 
 
  
 



  

7.3.4 Publishing 

Publishing is the main activity performed by information producers with 
respect to repositories. It consists of storing persistently the information 
contained in an instance of an exchange model. Upon publication, it becomes 
available to all the tools using the information contained in the repositories.  

7.3.5 Subscription 

The Subscription service can be seen as standing queries. Whenever 
information is stored in the repositories via the Publishing service, it is 
compared with user or tool specified criteria previously entered. If there is a 
match, it is forwarded, for example, to the user who requested it. The 
Subscription service allows to dynamically display or analyze information as 
it is produced. Also, in a multi-user environment, users can be notified of the 
information produced by others.  

7.4 Fact Extraction 

Fact extraction consists of finding pieces of information about a system. It is a 
fundamental step of reverse engineering and architecture recovery techniques and as a 
result, has often to be performed first [39]. This means that before any high-level 
reverse engineering analyses or architecture recovery activities can be performed, 
available information about a system has to be extracted and aggregated in a fact base. 
Such a fact base forms the foundation for further analysis tasks that are conducted 
next, either manually or (semi)-automatically using tools [39].  

Fact extraction can either be static or dynamic. The functional architecture of OASIS 
supports both, as explained in the next two sections.  

7.4.1 Static Fact Extraction 

Static fact extraction provides information which is obtained by observing 
only the artifacts of a system [40]. A common technique for extracting static 
facts from source code is parsing.  

7.4.1.1    Parsing 

Informally, a parser is a program which receives input in the form of source 
code instructions and breaks them into parts such as objects, methods, and 
attributes [39]. This collected data, as well as the dependencies among the 
extracted entities, e.g., inheritance and association relationships, are then 
added to a fact base.  

More formally, parsing transforms source code into a data structure, usually a 
tree, which is suitable for later processing and captures the implied hierarchy 
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of the source code. A parser generally operates in a two-stage process. First, it 
identifies the tokens in the source code and then builds a parse tree using 
them.  

A token is a categorized block of text, usually consisting of indivisible 
characters known as lexemes. Examples of tokens include literals, operators, 
and identifiers. A lexical analyzer initially reads the lexemes and categorizes 
them according to function, giving them meaning. This assignment of 
meaning is known as tokenization. A parse tree, or concrete syntax tree, is 
then generated from these tokens. A parse tree represents the syntactic 
structure of the source code according to a grammar.  

In the context of OASIS, an abstract syntax tree (AST) is used instead of a 
parse tree. In a parser, an AST is an intermediate between a parse tree and a 
data structure. The latter is often used as a compiler or interpreter's internal 
representation of a computer program, while it is being optimized and from 
which code is generated.  

An AST captures the essential structure of the source code in a tree form, 
while omitting unnecessary syntactic details. It differs from a parse tree by 
excluding nodes representing punctuation marks, such as the semi-colons 
terminating statements or the commas separating method arguments. It also 
omits tree nodes representing unary productions in the grammar. These 
omissions are represented by the structure of the AST [41].  

Figure 8 below shows the AST of the Java source code displayed in Figure 9.  

Figure 8. View of an Abstract Syntax Tree 
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Figure 9. Java Source Code 

7.4.1.2    Decompilation 

In the cases where the source code of a system is not available, parsing 
cannot be performed. In these circumstances, the decompilation of the binary 
code has to be carried out instead.  

A decompiler, or reverse compiler, is a program which attempts to perform 
the inverse process of the compiler. Given an executable program compiled 
using a high level programming language, the objective is to generate a high 
level language program which performs the same function as the executable 
program [42].  

Decompiling executable programs is not a trivial task, as one faces several 
difficulties. The main problems are the separation of data and code, the 
reconstruction of control structures, and the recovery of high-level data types 
[43]. Also, any meaningful names given by programmers to variables and 
methods to facilitate their identification are not usually stored in an 
executable file. Therefore, they cannot be recovered by the decompiler. 
Another problem is the great number of subroutines introduced by the 
compiler [42]. To set up its environment and for runtime support, the 
compiler includes subroutines. These are usually written in assembler and 
most of the time, cannot be translated into a high level language. In addition, 
library routines, written either in the compiler language or in assembler, are 
also included by the linker. As an example, a “hello world” program 
compiled in C generates 23 different procedures [42]. To improve the 
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decompilation process, decompilers make use of knowledge about certain 
compilers and libraries used in the compilation of the file to be decompiled 
[43].  

One case for which the decompilation is somewhat easier is Java. The reason 
is that Java bytecode is relatively high-level and is guaranteed to be well-
formed and well-typed due to verification constraints [44]. Therefore, it 
provides an ideal basis for decompilation back to Java source code. Another 
reason why decompiling bytecode is easier is that the most usual way of 
producing class files is to use Sun’s javac compiler, which has specific 
compilation patterns [45]. However, decompiling Java bytecode has been 
complicated by the fact that there is an increasing number of compilers that 
can generate bytecode for other languages (e.g., AspectJ and C), as well as by 
the use of bytecode optimizers and obfuscators. These produce faster and/or 
smaller class files in the first case and classes which are hard to decompile 
and understand in the latter. Although the bytecode generated by these tools 
is both correct and verifiable, it is much more complex than the one produced 
by javac [44].  

7.4.1.3    Build File Parsing 

After a software system has been designed and implemented, it has to be 
configured, compiled, and linked for the particular environment in which it 
will be deployed [46]. For small systems developed for a unique platform, the 
make utility and a single Makefile, for example, are usually sufficient for 
system building. However, in the case of large and complex systems running 
on multiple platforms and supporting several functional configurations, the 
build process is more complicated.  

Since the systems to be analyzed by the OASIS project will be large scale 
military applications, their configuration and built-time properties should be 
extracted from build management artifacts, such as build and configuration 
files [46]. Having the compilation dependencies between the compilation 
units of a system, the time-sequence configuration of the compilation 
procedure, as well as knowing which portions of source code are 
automatically generated at build time would provide valuable insights for the 
comprehension of an unfamiliar system.  

The software systems to be analyzed will be military applications developed 
in C++ or Java. Therefore, examples of build file formats that should be 
supported would be Makefile [47] and Visual Studio Solution files for C++, 
and Ant files [48] in the case of Java.  

7.4.1.4    Database Schema Extraction 

Most software systems for business and industry are information systems, i.e., 
they maintain and process vast amounts of persistent data using database 
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platforms [49]. This persistent data typically corresponds to the application 
domain elements whose values are relevant for the organization’s business 
goals [50]. Data analysis is therefore a crucial step to identify the central 
business objects in a software system.  

The objective of the Database Schema Extraction service group is to recover 
conceptual data models from physical databases. A conceptual model is 
expressed as an entity relationship (ER) schema, which consists of entity 
types, relationship types, attributes, as well as the various properties and 
constraints which translate the concepts and structures of the application 
domain [51]. This model should be structurally complete and semantically 
annotated. However, in most cases, important information about the data 
model is missing in the physical schema catalog extracted from the database 
[49]. Therefore, even though the Database Schema Extraction service group 
can provide support for extracting the schema catalog and reduce the effort 
spent in this phase, data analysis is a human-intensive activity and cannot be 
fully automated. It requires significant amount of experience and skills, as 
well as access to users and domain experts that can often contribute with 
valuable knowledge [49]. However, it has the potential to be a major aid in 
searching, collecting, and combining indicators for structural and semantic 
schema constraints, as well as to provide guidance from an initially 
incomplete data model to a complete and consistent result [49].  

7.4.2 Dynamic Fact Extraction 

Dynamic fact extraction provides information which is obtained by observing 
the system during execution [40]. As mentioned in Section 6, the 
heterogeneity and dynamism of today’s software systems make it difficult to 
comprehend them outside the actual time and context in which they execute 
[52]. Therefore, architectural recovery cannot rely only on static information. 
It must be complemented by dynamic analysis, such as the exchange of 
control and data between the various components at run time.  This 
information increases the level of precision provided by the static analysis 
and as a result, improves understanding. In general, when collecting dynamic 
information about a set of executions, one is interested in collecting 
information for some specific entities in the code (e.g., method calls and 
paths) and in a subset of the program (e.g., in a specific module or set of 
modules) [53].  

7.4.2.1    Instrumenting 

One technique commonly used to collect information about a system behavior 
is instrumentation. As opposed to general-purpose program transformations, 
instrumentation only aims to gather additional information about a system, 
rather than modify its original structure and behavior, allowing therefore only 
minor side effects, such as increases in execution time or changes to the log 
file [54]. As an example, Java bytecode instrumentation uses structural and 
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semantic information provided by the language and platform specifications to 
both identify instrumentation points as well as avoid affecting the original 
program structure and behavior [54]. Such instrumentation does not remove 
program elements (e.g., classes, fields, and methods). Variables defined by 
the original program may be read but not written. Instrumentation may add its 
own variables, even to existing program elements (e.g., new fields or local 
variables), and those variables may be read or written by it. Instrumentation 
may also insert new code into original program methods, and invoke other 
methods from this code, provided that original variables are not modified as a 
result of these invocations. Finally, instrumentation may outline code, i.e., 
move all or part of the method code into a new method and replace it in the 
original method with the invocation of the new one [54].  

Once executed, an instrumented program generates an execution trace, which 
can be defined as a record of the sequence of instructions executed that often 
takes the form of a list of code labels encountered [55].  

There are two different kinds of instrumentation: source and binary. In the 
first case, trace statements are added into the source code of an application. In 
the second one, trace statements are inserted into binary code, which includes 
applications as well as dynamic and shared libraries. Instrumenting source 
code is easier than binary code, as one can work in a high-level language. 
However, the disadvantage is that after it has been instrumented, the modified 
source code has to be recompiled in order to be able to execute the tracing 
statements and therefore, extract dynamic information.  

Due to the additional overhead for recompiling instrumented source code and 
the fact that the objective of the OASIS project is to recover and comprehend 
the architecture of large scale military software systems consisting of more 
than 1,000 classes, the present functional decomposition only considers 
binary instrumentation. The Instrumentation service group allows users to 
specify (1) the types of entities to instrument, (2) the parts of the code in 
which those entities must be instrumented, and (3) the kind of information to 
collect from the different entity types [56]. 

Figure 10 on the next page shows a sample Java program which prompts for a 
number and prints its factorial.  
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import java.io.*; 
 

public class Factorial { 
    private static BufferedReader in = new BufferedReader(new 
        InputStreamReader(System.in)); 

 
    public static final int fac(int n) { 
        return (n == 0)? 1 : n * fac(n - 1); 
    } 

 
    public static final int readInt() { 
        int n = 4711; 
        try { 
            System.out.print("Please enter a number> "); 
            n = Integer.parseInt(in.readLine()); 
        } catch(IOException e1) 
             { System.err.println(e1); } 
          catch(NumberFormatException e2)  
             { System.err.println(e2); } 
        return n; 
    } 

 
    public static void main(String[] argv) { 
        int n = readInt(); 
        System.out.println("Factorial of "+  n + " is " +  
        fac(n)); 
    } 
} 

Figure 10. Java Source Code [57] 

Figure 11 displays the resulting bytecode when the above Java source code is 
compiled and Figure 12, the bytecode after it has been instrumented using the 
Byte Code Engineering Library (BCEL) [57].  

0:  iload_0 
1:  ifne           #8 
4:  iconst_1 
5:  goto           #16 
8:  iload_0 
9:  iload_0 
10: iconst_1 
11: isub 
12: invokestatic   Factorial.fac (I)I (12) 
15: imul 
16: ireturn 

Figure 11. Java Bytecode [57] 
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0:  sipush        4711 
3:  istore_0 
4:  getstatic     java.lang.System.out Ljava/io/PrintStream; 
7:  ldc           "Please enter a number> " 
9:  invokevirtual java.io.PrintStream.print (Ljava/lang/String;)V 
12: getstatic     Factorial.in Ljava/io/BufferedReader; 
15: invokevirtual java.io.BufferedReader.readLine ()Ljava/lang/String; 
18: invokestatic  java.lang.Integer.parseInt (Ljava/lang/String;)I 
21: istore_0 
22: goto          #44 
25: astore_1 
26: getstatic     java.lang.System.err Ljava/io/PrintStream; 
29: aload_1 
30: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V 
33: goto          #44 
36: astore_1 
37: getstatic     java.lang.System.err Ljava/io/PrintStream; 
40: aload_1 
41: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V  
44: iload_0 
45: ireturn 

Figure 12. Instrumented Java Bytecode [57] 

7.4.2.2    Profiling 

Profiling injects instrumentation statements into the binary code of a software 
system to analyze the performance and resource utilization of its execution. It 
is useful for comprehension, as it allows identifying the portions of its source 
code which dominate execution time. It is also useful to get an understanding 
of the complex iterations between the source code, third-party libraries, 
operating system, hardware, networks, and other processes.  

Figure 13 and 14 displayed next are two examples of profiling information 
that could be generated by the OASIS tool. They were produced using the 
Test and Performance Tools Platform (TPTP) Eclipse project [58].  

Figure 13 shows the Coverage Statistics view of TPTP. It displays, for each 
class of the application, in this case, JUnit [59], its corresponding package, 
the number of times its methods were executed (Calls), the number of its 
methods which were executed (Methods hit) and not executed (Methods 
missed), as well as the ratio between the last two (% Methods hit).  
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Figure 13. TPTP Coverage Statistics View 

Figure 14 contains three pie charts generated by TPTP using the Business 
Intelligence and Reporting Tools (BIRT) charting library [60]. All three are at 
the package level and respectively list the top 10 packages in terms of base 
time, cumulative time, and number of calls, for a particular program 
execution. 

Figure 14. TPTP Execution Information Report 

In the previous figure (Figure 14), the base time represents the time spent 
executing methods inside a package, excluding the time spent in other 
methods called by them. The cumulative time corresponds to the time the 
methods of a package spend on the execution stack, including both the time 
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spent in the methods themselves and in the other methods they call. Finally, 
the number of calls counts the methods called by each package.  

7.4.2.3    Monitoring 

Like profiling, monitoring also instruments the binary code of a system. The 
objective is to observe its execution for the occurrence of specific events in 
real-time. Examples of events could be disk, database, or network access. 
Monitoring those events would further expand the knowledge about a system 
under study, as it could allow exploring its behavior and more precisely, the 
mechanisms it uses for interoperability.  

Figure 15 displays a screen shot of the FileMon utility [61] from Microsoft. 
FileMon monitors and displays file system activity on a system in real-time. 
For the OASIS tool, functionality similar to this one should be implemented 
for file monitoring. For each request (e.g., open, read, write, or close), the 
responsible process as well as the path of the file being requested would be 
listed.  

Figure 15. FileMon for Windows 

7.5 Analysis 

The Analysis subsystem relates to the separation of a system into its component parts. 
More specifically, it provides techniques to [62]:  
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• Separate a system into its constituent parts, in order to identify or classify the 
elements of communication.  

• Make explicit the relationships among those elements to determine their 
connections and interactions.  

• Recognize the organizational principles of the arrangement and structure that 
hold these elements together.  

7.5.1 Software Metrics 

A metric measures a property of a piece of software or its specifications. The 
OASIS functional architecture provides an extensive set of metrics, as it has 
been shown that they can provide guidance in analyzing the quality of the 
design and source code of a system, as well as its possible maintainability and 
comprehension [63]. The following list of metrics comes from [64], and each 
of them falls within one of the following three categories: size, complexity, or 
object-oriented.  

Size metrics give an indication of the size of the source code, although 
thresholds to evaluate their meaning depend on the programming language 
and conventions used. In spite of this, size metrics should still be considered, 
as large classes and methods will be harder to understand than ones of a lesser 
size. Complexity metrics are usually considered as more meaningful 
measures of the size of a software system than simple size metrics, as they are 
not affected by the programming style. Object-oriented metrics can give an 
indication on the quality of the source code, especially from the viewpoint of 
classes and packages.  

7.5.1.1    Size Metrics 

Lines of Code (LOC). It is a size metric which simply counts the number of 
lines of code in a source file or module. It is generally agreed that LOC is not 
a very reliable metric, as it is affected by the coding style.  

Non-Comment Non-Blank (NCNB). Also known as Source Lines of Code 
(SLOC), it is a more sophisticated version of LOC. It counts the number of 
lines of code, but excludes comments or blank lines.  

7.5.1.2    Complexity Metric 

Cyclomatic Complexity (CC). It is the most widely used complexity metric. 
It counts the number of linearly independent paths through a program 
module. It is calculated from the module’s control flow graph. CC = e - n + 
2, where e is the number of edges in the graph and n, the number of nodes. 
Program modules with a high complexity tend to be more difficult to 
understand.  
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7.5.1.3    Object-Oriented Class Metrics 

The following list of object-oriented class metrics comes from the work of 
Chidamber and Kemerer [65]. There is a significant amount of documentary 
evidence on the degree to which the next six metrics provide insight into the 
design process [64].  

Weighted Methods per Class (WMC). It is the sum of the CC of all class 
methods. The number of methods and their complexity are predicators of the 
time and effort required to understand the class. Other information useful for 
comprehension that can be derived from this metric is that the larger the 
number of methods in a class, the greater is the potential impact on the 
classes inheriting them. Also, classes with a large number of methods are 
more likely to be application specific.  

Response for a Class (RFC). Counts the number of methods that can be 
invoked as a result of a message sent to an object of the class or by some 
methods in the class. It also includes all the methods accessible within the 
class hierarchy. The larger the RFC, the greater is the complexity of the class 
and therefore, the more difficult it is to understand it.  

Lack of Cohesion (LCOM). Counts the sets of methods in a class that are 
not related through the sharing of some of the class's instance variables. High 
cohesion indicates good class subdivision. A lack or low cohesion increases 
complexity and therefore, comprehension. Classes with low cohesion should 
be subdivided into two or more subclasses.  

Coupling Between Object Classes (CBO). It is the number of distinct non-
inheritance related class hierarchies on which a class depends. The higher the 
CBO of a class, the more difficult it is to understand it, as it is interrelated 
with other classes.  

Depth of Inheritance Tree (DIT). Counts the number of ancestors of a class, 
from the class node to the root of the inheritance tree. The deeper a class is 
within the inheritance hierarchy, the greater the number of methods it is likely 
to inherit and therefore, the more complex is the prediction of its behavior.  

Number of Children (NOC). Measures inheritance by counting the number 
of immediate subclasses of a class. It gives an indication of the possible 
influence a class has on the design of the system.  

7.5.1.4    Object-Oriented Package Metrics 

The following suite of object-oriented package metrics is based on the work 
undertaken by Martin [66]. For Java, the notion of a package is well defined. 
In the case of C++, it is defined as the set of classes in the modules of a single 
directory [64].  
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Afferent Coupling (Ca). Counts the number of other packages which depend 
on classes within the analyzed package. Ca is an indicator of the level of 
responsibility of a package.  

Efferent Coupling (Ce). Counts the number of other packages that the 
classes within the analyzed package depend upon. Ce is an indicator of the 
package’s independence.  

Abstractness (A). It is the ratio of the number of abstract classes within a 
package relative to the total number of classes it contains. The range of this 
metric is from 0 to 1. An abstractness value of zero (A = 0) indicates a 
completely concrete package, while a value of one (A = 1) indicates a 
completely abstract package. 

Instability (I). Instability is defined as the ratio between efferent and total 
coupling (Ca + Ce). This metric is an indicator of the package’s resilience to 
change, i.e., the effort to change a package without impacting other packages 
within the application. The range of this metric goes from 0 to 1. An I of 0 
reveals a completely stable package, while an I of 1 indicates that the package 
is unstable.  

Distance from the Main Sequence (DMS). Calculates the perpendicular 
distance of a package from the idealized line given by A + I = 1. It indicates 
the package’s balance between abstractness and stability. A package squarely 
on the main sequence is perfectly balanced with respect to abstractness and 
stability. Ideally, packages should either be completely abstract and stable (x 
= 0, y = 1), or completely concrete and unstable (x = 1, y = 0). The range for 
this metric goes from 0 to 1. A DMS of 0 indicates that a package is 
coincident with the main sequence, while a DMS of 1 reveals that the 
package is as far as possible from the main sequence.  

7.5.2 Feature Location 

A feature is defined as a behavior that is observable to a user interacting with 
a system [67]. The mapping between a feature and the source code 
implementing it is termed in software engineering as feature location [68].  

There exist several techniques to assist with the task of feature location. The 
present functional architecture supports two of them. The first technique is 
software reconnaissance, while the second one makes use of concept analysis, 
a mathematical technique to investigate binary relations.  

Software reconnaissance [68] is an automated feature location technique 
which uses dynamic analysis of scenario execution. A scenario is a sequence 
of user inputs triggering actions of a system which yields an observable result 
to an actor [23]. A scenario is said to execute a feature if the observable result 
is executed by the scenario’s actions [69].  
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Software reconnaissance works as follows [69]:  

1. The invoking input set I, i.e., a set of scenarios that will execute the 
feature, is identified.  

2. The excluding input set E, i.e., a set of scenarios that will not execute the 
feature, is identified.  

3. The system is executed twice using I and E separately.  

4. By subtracting all the methods in the execution trace for E from those in 
the execution trace for I, the remaining methods are the ones that 
specifically deal with the feature and are a starting point for a more 
detailed static analysis.  

The above approach for feature location deals with one feature at a time and 
gives little insight into connections between a set of related features. To 
derive detailed relationships between features and executed programs, a 
second technique [69] using concept analysis is proposed. Concept analysis is 
a mathematical technique that provides insights into binary relations [70]. 
The activities this second technique involves are briefly described next. For a 
more detailed description, please refer to Appendix A.  

1. The set of relevant features F is identified.  

2. The set of scenarios A is identified so that the features in F are covered. 

3. Execution traces are generated so that all methods executed for each 
scenario are identified.  

4. The relation table R between scenarios and methods is created.  

5. Concept analysis is performed for the relation table R.  

This technique identifies methods jointly required by any subset of features, 
classifies methods as low or high-level with respect to the given set of 
features, reveals additional dependencies between methods, and helps to 
identify the methods that together constitute a larger component [69].  

7.5.3 Domain Knowledge Exploitation 

One of the objectives of software comprehension is to understand the domain 
semantics of source code, i.e., to understand the functionality of the source 
code in terms of the system’s application domain. A domain is a problem area 
characterized by its vocabulary, common assumptions, architectural solution 
approaches, and literature [71]. As will be discussed in Section 7.9.3, the 
Domain Knowledge Definition service group of the present functional 
architecture allows users to capture and define the domain model of a 
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software system. This knowledge will allow them, while analyzing the system 
under study, to map source code elements to their corresponding concepts of 
the application domain, as well as give them a set of expected constructs to 
look for in the source code. These could be computer representations of real 
world objects, algorithms, or overall architectural schemes.  

7.6 Synthesis 

According to Bloom’s Taxonomy [62], synthesis consists of building a structure or 
pattern from diverse elements, i.e., to put parts together to a form a whole, with the 
emphasis on creating a new meaning or structure. The OASIS functional architecture 
provides three service groups to combine several source code elements to form a new 
whole at a higher level of abstraction: Design Pattern Recognition, Platform Model 
Transformations, and Clustering. These are explained next.  

7.6.1 Design Pattern Recovery 

One of the typical methods to understand the source code of a software 
system is to generate a graphical representation of its logical structure and 
behavior using, for example, the Unified Modeling Language (UML). The 
OASIS functional architecture supports the generation of such diagrams, as 
further described in Section 7.7. However, these graphical representations 
alone are often still insufficient for someone who is trying to completely 
understand a section of source code. One of the possible reasons, as stated by 
Beck and Johnson in [72], is that “existing design notations focus on 
communicating the ‘what’ of designs, but almost completely ignore the 
‘why’.”  

A design pattern “provides a scheme for refining the subsystems or 
components of a software system, or the relationships between them. It 
describes commonly recurring structure of communicating components that 
solves a general design problem within a given context” [73]. A design 
pattern not only contains a solution, i.e., the elements that make up the 
design, their relationships, responsibilities, but also the results and trade-offs 
of applying the pattern [74]. The recovery of design patterns helps in the 
understanding of a piece of source code, since a pattern provides knowledge 
about the role of each class within the pattern, the reason of certain 
relationships among pattern constituents and/or the remaining parts of a 
system. The recovery of design patterns is also important for comprehension, 
as they capture the rational behind the source code and can partially answer 
the question as to why is the system designed like that?  

A typical system structure for design pattern recovery consists of three parts: 
a parser, detector, and database. Using the static facts extracted from the 
source code parser, the detector retrieves pattern definitions from the 
database, compares them with the extracted facts, and outputs the detection 
results [75]. Recovering design patterns is challenging and the precision of 
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the currently existing techniques varies. Also, most of them can only identify 
a predefined set of structural design patterns.  

7.6.2 Platform Models Transformations 

The increasing number of technologies and target architectures that are 
available today for each component of a software system complicates the 
development of large scale systems. For example, each different platform 
results in different requirements for the design. As a consequence, the 
resulting designs are not portable, as they are too specifically related to a 
particular technology platform. Selecting a different platform, or simply 
changing the version of the platform used, necessitates great efforts.  

As a solution to the above problem, the OMG has defined an approach to 
software system specification called Model Driven Architecture (MDA). 
MDA separates the specification of system functionality from the 
specification of the implementation of that functionality on a specific 
technology platform [76]. This approach, as well as the standards which 
support it, allow the same model specifying system functionality to be 
realized on multiple platforms through auxiliary mapping standards, or 
through point mappings to specific platforms [76]. This is achieved by the use 
of Platform Independent Models (PIMs) and Platform Specific Models 
(PSMs).  

A PIM is a model, expressed in UML, of a subsystem that contains no 
information specific to the platform or the technology that is used to realize it 
[77]. A PSM is a model of a subsystem that includes information about the 
specific technology that is used in its realization on a specific platform and 
hence, possibly contains elements that are specific to the platform [77]. This 
is also a UML model but expressed, because of the conversion step, in a 
dialect, i.e., a profile, of UML that precisely mirrors technical run-time 
elements of the target platform [78]. Note that the semantics of the PIM are 
also carried into the PSM.  

An example of a PIM could be the formal definition of an operation that 
transfers funds from a checking to a savings account, specifying the amount 
to be subtracted from a designated checking to a designated savings account, 
as well as the constraint that the two accounts must belong to the same 
customer [76]. On the other hand, a specification of the funds transfer 
operation depending on interfaces to artifacts of CORBA, like the ORB, 
Object Services, or GIOP/IIOP would be a PSM.  

In MDA, how the functionality specified in a PSM is derived from a PIM is 
done through transformations. As illustrated in Figure 16, when a PIM is 
sufficiently refined to be projected to the execution infrastructure, it is 
transformed into one or more PSMs, as each technology platform necessitates 
its specific PSM. Following this, the application code is generated. For 
component environments, it will consist of producing several types of code 
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and configuration files, such as interface, component definition, program 
code, component configuration, and assembly configuration files [78].  

 

Figure 16. MDA Transformations 

As illustrated in Figure 17, the Platform Models Transformations service 
group of the present functional architecture attempts to inverse the order of 
the MDA transformations. Starting from the application code, the PSM would 
be recovered. Then, it would be transformed to produce a complete PIM.  

 

Figure 17. Inverse MDA Transformations 
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Recovering the fundamental precise structure and behavior of a software 
system in the PIM from implementation specific concerns contained in the 
PSM would facilitate its comprehension. It is easier to understand a model 
uncluttered by platform-specific semantics [76]. For example, a PSM need to 
use platform concepts of exception mechanisms, parameter types (e.g., 
platform-specific rules about objects references, value types, and semantics of 
call by value), as well as component model constructs, while a PIM does not 
need these characteristics and can use instead a simple and more uniform 
model [76]. By abstracting the implementation details, one can focus on the 
functionalities provided by a system and recover its domain model contained 
as part of the PSM.  

7.6.3 Clustering 

One way to understand a large scale software system is to decompose it into 
smaller subsystems which are more manageable and easier to understand. 
One technique which has been designed to facilitate the execution of this task 
automatically is software clustering. A cluster is commonly defined as a 
category of objects which exhibit similar features or properties [79]. 
Clustering aims at partitioning the source files of a software system into 
clusters, such that files which contain source code with similar functionality 
are placed in the same cluster, while files in different clusters contain source 
code that performs dissimilar functions [80]. Clustering techniques usually 
make use of criteria such as high cohesion and low coupling to decompose a 
software system into subsystems [81, 82, 83].   

As mentioned in [79], in order to be useful for comprehension, an effective 
software clustering algorithm should propose clusters which follow familiar 
patterns and have appropriate names. The size of clusters should be kept at 
around 20 objects, by creating hierarchies of nested clusters. This approach, 
combined with effective visualization techniques, should produce clusterings 
that are useful for the comprehension of an unfamiliar system. An example of 
an algorithm which subscribes to this philosophy is the Algorithm for 
Comprehension-Driven Clustering (ACDC) presented in [79].  

7.7 Visualization 

The Visualization subsystem allows to generate modeling diagrams using, for instance, 
UML, to comprehend a system architecture from different views and using semantic 
zooming as a visualization technique. These views capture the decisions about the 
system’s requirements, its logical and physical elements, as well as its structural and 
behavioral aspects. The different views generated by the present functional 
architecture are the design, interaction, implementation, and use case view. The 
different diagrams associated with each of them are indicated in Table 1 on the next 
page.  
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Table 1. Diagrams Associated with Each View 

 Design View Interaction View Implementation View Use Case View 

Diagram Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Package x        

Class x  x      

Component     x    

Interaction  x  x  x  x 

Call Graph    x     

Statechart  x  x  x  x 

Activity  x  x  x  x 

Use Case       x  

7.7.1 Package Diagram 

A package is a general-purpose mechanism for organizing elements (e.g., 
classes, interfaces, other packages) into groups [84]. It is graphically rendered 
as a tabbed folder. A package diagram is composed only of packages and the 
dependencies between them. Figure 18 below shows an example of a package 
diagram.  

 

Figure 18. Package Diagram [85] 
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7.7.2 Class Diagram 

Class diagrams model the static design view of a software system. They are 
used to visualize the static aspects of its building blocks, their relationships, 
as well as to specify their details for construction. As illustrated in Figure 19, 
a class diagram shows a set of classes, interfaces, collaborations, and their 
relationships [84].  

 

Figure 19. Class Diagram [85] 

7.7.3 Component Diagram 

UML components model the physical elements of a software system, such as 
executables, libraries, tables, files, and documents [84]. They typically 
represent the physical packaging of otherwise logical elements, such as 
classes, interfaces, and collaborations. Graphically, a component is rendered 
as a rectangle with tabs.  

Figure 20 displays an example of a component diagram. It shows the 
organization and dependencies among a set of components. It addresses the 
static implementation view of a software system [84].  
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Figure 20. Component Diagram [85] 

7.7.4 Interaction Diagram 

Interaction diagrams model the dynamic aspect of a software system. They 
model concrete or prototypical instances of classes, interfaces, components, 
and nodes, along with the messages which are dispatched among them [84]. 
There are two types of interaction diagrams: sequence and communication 
diagram, the latter formerly known as collaboration diagram.  

A sequence diagram, such as the one shown in Figure 21, emphasizes the 
time ordering of messages, while a communication diagram, like the one 
displayed in Figure 22, puts the accent on the structural organization of the 
objects which send and receive messages. Interaction and communication 
diagrams are semantically equivalent, i.e., one can be converted to the other 
without loss of information [84].  
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Figure 21. Sequence Diagram [85] 

 

 

Figure 22. Communication Diagram [85] 

44 DRDC Valcartier TM 2006-732 
 
  
 



  

7.7.5 Call Graph 

A call graph is a directed graph which represents calling relationships 
between functions in a given program [86]. It shows the control flow of a 
program and can be determined partially using static analysis. In this case, it 
is usually regarded as a nondeterministic structure, as many branches are 
decided only at run time. A call graph can also be based on an execution 
trace, as illustrated in the Rational Quantify [87] call graph of Figure 23.  

Figure 23. Rational Quantify Call Graph 

7.7.6 Statechart Diagram 

A state machine is a behavior which specifies the sequence of states a single 
object goes through during its lifetime in response to events, together with its 
responses to those events [84]. A state is represented as a rectangle with 
rounded corners. The relationships between two states indicating that an 
object in the first state will perform certain actions and enter the second state 
when a specified event occurs is a transition [84]. It is rendered a solid 
directed line.  

A statechart diagram is a diagram that shows a state machine, as illustrated in 
Figure 24.  
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Figure 24. Statechart Diagram [85] 

7.7.7 Activity Diagram 

An activity diagram shows the flow from activity to activity. An activity is an 
ongoing nonatomic execution within a state machine. It ultimately results in 
some action, which is made up of executable atomic computations that result 
in a change of state in the system or the return of a value [84]. Calling an 
operation, sending a signal, creating or destroying an object, and evaluating 
an expression are examples of activities.  

An activity diagram contains action and activity sates, transitions, branches, 
forks, and joins. Action and activity states are represented using a lozenge 
shape. A transition occurs when an action or activity of a state completes and 
the flow of control passes to the next one. It is represented as a directed line. 
A branch, depicted as a diamond, specifies alternate paths. Finally, a fork and 
join respectively represents the splitting of a single flow of control into two or 
more concurrent flows of control and their synchronization. Both are 
rendered as a thick horizontal line.  

Activity diagrams are used to model a workflow or an operation. Figure 25 
shows the activity diagram of a process order.  
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Figure 25. Activity Diagram [85] 

7.7.8 Use Case Diagram 

In UML, a use case specifies the behavior of a system, or a part of a system, 
and is a description of a set of sequences of actions, including variants, that a 
system performs to yield an observable result of value to an actor [84]. It 
represents a functional requirement and is rendered graphically as an ellipse. 
An actor represents a coherent set of roles that users play when interacting 
with the system. Typically, an actor represents a role played by a human, a 
hardware device, or even another system [84]. Actors are rendered as stick 
figures.  
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A use case diagram shows a set of use cases, actors, as well as their 
relationships [84]. Figure 26 displays an example of a use case diagram for a 
sales order system.  

Figure 26. Use Case Diagram [85] 

7.7.9 Semantic Zooming 

Semantic zooming is a visualization technique defined by Bederson and 
Hollan [88]. The principle behind it is that as the viewpoint zooms on an area, 
the details not only become more distinct, as one would expect by virtue of 
being closer, but the representation also changes [89]. For example, in Figure 
27, (a) displays the top level view of a method; (b) displays the top level view 
after semantic zooming has been triggered; (c) shows the resulting detailed 
view of the method, with the high level program elements of (a) still visible.  
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(a) (b)

(c)

Figure 27. Semantic Zooming 

In the present functional architecture, semantic zooming is used for package 
and class diagrams. When the viewpoint zooms on a package, the classes 
declared inside appear. If semantic zooming is still applied, the methods and 
instance variables of the class become visible.  

7.8 Documentation Generation 

It is commonly accepted that good documentation significantly improves the process 
of understanding a software system. However, as already mentioned, most existing 
systems have probably undergone several code revisions without a real concern about 
maintaining their documentation up to date [3]. One area of reverse engineering which 
intends to recover the documentation about an existing subject system is 
redocumentation [90]. Redocumentation is the creation or revision of a semantically 
equivalent representation within the same relative abstraction level [90]. As shown in 
Figure 28, redocumentation cannot entirely be derived automatically. It has to be 
combined with information provided by hand. This information is supplied by users 
knowledgeable about the domain and/or system.  
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Figure 28. Rocumentation Process [91] 

At the architectural level, the purpose of redocumentation is to recover the software 
system architectural description, which is organized into one or more constituents 
called views. Each view addresses one or more of the concerns of the system 
stakeholders and may consist of one or more architectural models [92]. Therefore, to 
redocument an architecture, multiple views and documents must be created. In 
addition, navigation mechanisms must be provided to assist in discovering related 
information among the various views and documents generated. Numerous 
documentation approaches make use of hypertext to link related documents [93, 94, 
95].  

The remaining of this section briefly describes three methodologies used in forward 
engineering and identifies some documentation artifacts they produce which could be 
recovered from an existing software system. However, as illustrated in Figure 29, there 
is a limit to what reverse engineering can recover.  
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Figure 29. Differences between Forward and Reverse Engineering Viewpoints [90] 

7.8.1 Rational Unified Process 

The Rational Unified Process (RUP) is a software engineering process 
framework. It provides a disciplined approach to assign and manage tasks and 
responsibilities to produce high-quality software that meets the needs of its 
end users within a predictable schedule and budget [96]. RUP is based on a 
set of building blocks which describe what is to be produced, the necessary 
skills required, and the step-by-step explanation describing how specific 
development goals are achieved. The work products are probably the 
elements of most interest for documentation generation, as they represent the 
documents and models produced while working through the process. The 
major ones are illustrated in Figure 30.  

 

 

 

DRDC Valcartier TM 2006-732 51 
 
  
 



  
 

 

Figure 30. Major Work Products of the Rational Unified Process [96] 

Only a subset of the above work products can be recreated from an existing 
software system. Examples are the analysis, design, and implementation 
model, which roughly correspond to the existing design and code elements of 
Figure 29. The software requirements specification contains use cases, which 
can also be retrieved using an approach such as the one described in [97]. The 
last work product from an existing software system that can partially be 
recovered is the deployment plan, which includes installation scripts and 
configuration documents. The remaining RUP work products cannot be 
recreated as they are too high level and too close to the application domain. It 
would require a considerable manual effort from a person knowledgeable 
about the system, its stakeholders, and the context in which it was developed.  

7.8.2 Department of Defense Architecture Framework 

The Department of Defense Architecture Framework (DoDAF) defines a 
common approach for DoD architecture description, development, 
presentation, and integration for both warfighting operations and business 
processes [98]. As illustrated in Figure 31, it is organized into four basic view 
sets: the overarching All View (AV), Operational View (OV), Systems View 
(SV), and Technical Standards View (TV). Each view has a number of 
products that describe its various aspects.  

Although DoDAF is specifically suitable for large systems with complex 
integration and interoperability challenges, it does not represent software 
architectures. Some software architectural views are needed to supplement 
the DoDAF products to understand how well these systems will operate [99]. 
As a result, it is not a suitable candidate for documentation generation. 
However, in spite of that, some of the DoDAF products could be recreated 
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from an existing system. One example is the TV-1 Technical Standards 
Profile, which documents the standards used in a given architecture. In the 
SV, the following products could also be recovered: the SV-4 Systems 
Functionality Description, which details the functions performed by systems 
and the information flow among system functions; the SV-10b Systems State 
Transition Description, that illustrates the responses of a system to events; the 
SV-10c Systems Event-Trace Description, which refines the critical 
sequences of events described in the OV; and the SV-11 Physical Schema, 
which is a physical implementation of the information of the OV-7 Logical 
Data Model.  

Figure 31. DoDAF View Sets [98] 

7.8.3 IEEE 12207 

The IEEE 12207 standard establishes a common framework for software life 
cycle processes [100]. As shown in Figure 32, these are defined in three 
broad categories: Primary Life Cycle Processes, Supporting Life Cycle 
Processes, and Organizational Life Cycle Processes. Each process is defined 
in terms of activities, which are in turn broken down into a set of tasks.  
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Figure 32. 12207 Life Cycle Processes [100] 

The IEEE 12207 standard is especially appropriate for acquisitions, as it 
recognizes the distinct roles of acquirer and supplier. In fact, it is intended for 
two-party use, where an agreement or contract defines the development, 
maintenance, or operation of a software system [101]. The set of processes, 
activities and tasks are then adapted to the software project. As the IEEE 
12207 standard is a relatively high-level document, it does not specify the 
details of how to perform the activities and tasks comprising the processes, 
nor does it prescribe the format or content of documentation [101]. As a 
result, it may be difficult to redocument an existing software system. 
However, some information contained in the documents created as part of the 
development process activities could be recovered. These development 
activities, illustrated in Figure 33, are closely related to the major work 
products of the RUP described in Section 7.8.1.  

 

54 DRDC Valcartier TM 2006-732 
 
  
 



  

 

Figure 33. 12207 Activity Classification [102] 

7.9 Comprehension Process 

Once implemented, the present functional architecture will expose potential users to a 
lot of information, as software systems to be comprehended will become larger and 
grow into complexity. Depending on the specific task a user wants to accomplish, 
some of the information and techniques provided by the OASIS tool could be 
irrelevant, therefore overloading the user with unrelated information. To prevent such 
situations from happening, the architecture recovery and comprehension tool should 
provide users with the necessary guidance in choosing the tools, abstraction levels, and 
analysis techniques that are appropriate for the specific task to be performed. This 
support will be provided through the Comprehension Process subsystem. This 
subsystem combines user experience with techniques and tools to reduce the 
complexity of the comprehension process, by providing only a coherent set of 
applicable tools and information relevant to the specific comprehension task.  

7.9.1 Process Management 

As mentioned in Section 3, there are many individual characteristics that will 
impact how a programmer tackles a comprehension task [7]. The most 
important ones are the program under study, the characteristics of the 
programmer, as well as the comprehension task to achieve. However, the 
currently existing tools do not take these characteristics into consideration, as 
they provide a one tool fits all approach. They do not distinguish between the 
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different users’ experience and knowledge levels, as well as the particular 
comprehension goals and tasks.  

The OASIS functional architecture attempts to address this limitation by 
offering the possibility to create user specific architecture recovery and 
comprehension workflow templates. These templates are created by users to 
take into consideration their technical expertise, the comprehension tasks they 
want to complete, as well as the type of software system to be analyzed.  

7.9.2 Process Execution 

Once created, the architecture recovery and comprehension workflow 
templates can be instantiated to guide users while performing comprehension 
tasks. These could be similar to the cheat sheets provided by Eclipse. An 
example of an Eclipse cheat sheet is illustrated in Figure 34. A cheat sheet 
guides the user through a series of complex tasks to achieve an overall goal. 
Some steps can be performed by the cheat sheet and some are described so 
that the user can manually complete them.  

The instantiated workflows would guide users through predefined tasks by 
providing them with a choice of tools, abstraction levels, and analysis 
techniques that might be useful during a specific task. The objective is to 
avoid exposing irrelevant information to the user.  

 

Figure 34. Eclipse Cheat Sheet 
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7.9.3 Domain Knowledge Definition 

In Section 2.2, one of the cognitive models presented to understand a 
software system is the top-down approach. Using this strategy, a programmer 
reconstructs knowledge about the application domain and then maps it on the 
source code to identify the relevant software artifacts. However, one 
limitation of the current tools which was identified in Section 6 is that they do 
not offer functionalities to incorporate domain and user knowledge about a 
software system. This might prevent programmers from using the top-down 
approach as a comprehension strategy.  

To overcome this limitation, the Domain Knowledge Definition service group 
allows users to capture and define the domain model of a software system to 
comprehend. This results in a vocabulary of terms representing entities of the 
domain and their relationships, which together imply certain semantic 
information. For example, if a user wanted to understand the Collaborative 
Operations Planning System (COPlanS) [103], an application developed by 
the Decision Support Systems Section at DRDC Valcartier to support the 
Military Operational Planning Process, then the user would use the Domain 
Knowledge Definition service group to define in a model, the elements of the 
application domain. In this particular case, such elements could be course of 
action, mission, operation, and risk. This model would then be used to map 
the elements of the application domain to their corresponding source code 
artifacts.  

7.10 Graphical User Interface 

The OASIS functional architecture aims at providing an environment into which 
comprehension tools can be integrated. This integration is supported at the data level 
by the infrastructure, which consists of the Information Management Services, Data 
Access, and Repositories subsystems. However, this integration must also be 
supported at the user interface level. This separation of concerns between the data and 
user interface is known as the Model-View-Controller architectural pattern [104]. In 
this pattern, the model represents the information on which the application operates, 
the view renders the model in a form suitable for interaction, and the controller 
processes and responds to user actions to invoke changes on the model. The controller 
can control several views. This is required to support the concept of multiple 
coordinated views, which enhance comprehension activities [105].  

The coordination mechanism in the present functional architecture is achieved through 
the use of pluggable units of functionalities called plug-ins. This is similar to what is 
used in Eclipse. A plug-in provides functionality by hooking into extension points 
defined by other plug-ins. It can also define new extension points. Using this 
mechanism, several views can be coordinated. As an example, in Figure 35, when the 
ListTest item is selected in the Package Explorer view, the same element is 
selected in the Outline and Properties views and displayed in the editor. Also, 
selecting an item can cause the editor to scroll if this element was not visible.  

DRDC Valcartier TM 2006-732 57 
 
  
 



  
 

Another concept present in Eclipse is user action. Plug-ins can add actions to menus, 
contextual menus, and toolbars, for example, and reuse existing actions.  This helps in 
providing a consistent user experience across various integrated tools.  

Figure 35. View Coordination in Eclipse 
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8. Conclusions and Future Work 
 

The research community in the field of software comprehension has produced many 
diverse tools and prototypes to assist with the understanding of already existing 
systems [7]. However, the majority of these tools have not yet been adopted in the 
industry. One possible explanation for this is that the value of many research ideas has 
not been adequately substantiated through studies [11].  

The present technical memorandum describes the functional decomposition of an 
architecture recovery and comprehension tool. This functional decomposition is based 
on the results of a qualitative study conducted by the OASIS research group using 
static and dynamic analysis tools to recover and comprehend the architecture of large 
scale military applications written in C++ and Java. It is also based on the findings 
contained in a state-of-the-art survey on system architecture recovery and 
comprehension. This functional decomposition is a way to synthesize the knowledge 
of the OASIS group in this research area. It serves as a reference model which is 
destined to evolve with the advancement of the group’s knowledge in the area of 
architecture recovery and comprehension and orient its future work.  

Following the conceptualization of this functional decomposition, the next step will 
consist of implementing a subset of it as a collection of Eclipse plug-ins to recover and 
comprehend the architecture of Java software systems. As already mentioned, Eclipse 
is an extensible open source IDE. Using Eclipse and its plug-in architecture will 
prevent the OASIS project from making the same mistake many existing tools have 
made, i.e., provide a suite of tools that aim for “one tool fits all.” There already exist a 
wide variety of tools available as Eclipse plug-ins that can assist with program 
comprehension. The extensible architecture of Eclipse will allow the OASIS project to 
take advantage of these tools and integrate them with the technical solutions to be 
developed at DRDC Valcartier. Using Eclipse as a development framework will also 
allow the OASIS project to reuse the browsing and searching functionalities it offers 
and which were found to be useful for the comprehension of software systems in [6].  

Ideally, once this prototype is developed, another study, similar to the previous one but 
with an improved design and set of comprehension tasks, should be conducted. Its 
objective would be to assess the added value of the OASIS architecture recovery and 
comprehension prototype on the understanding of participants. Future work should 
also consist of extending the prototype to support the architecture recovery and 
comprehension of C++ legacy systems, through the Eclipse C/C++ Development 
Tooling (CDT) project [106]. This would address one limitation of most existing tools, 
i.e., multi-language support.  
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10. Appendix A 
 

Concept analysis is a mathematical technique that provides insights into binary 
relations [70]. It is based on a relation R between a set of objects O and a set of 
attributes A, i.e., R ⊆ O x A. As an example, Table 2 shows the binary relation between 
arbitrary objects and attributes. In this case, an object oi has attribute aj if row I and 
column j are marked with an x.  

Table 2. Relation Example [69] 

 a1 a2 a3 a4 a5 a6 a7 a8

o1 x x       

o2   x x x    

o3   x x  x x x 

o4   x x x x x x 

A pair (O, A) is called a concept if all the objects in O share all attributes in A. Table 3 
contains the concepts for the relation in Table 2.  

Table 3. Concepts for Table 2 

c1 ({o1, o2, o3, o4}, ∅) 

c2 ({o2, o3, o4}, {a3, a4}) 

c3 ({o1}, {a1, a2}) 

c4 ({o2, o4}, {a3, a4, a5}) 

c5 ({o3, o4}, {a3, a4, a6, a7, a8}) 

c6 ({o4}, {a3, a4, a5, a6, a7, a8}) 

c7 (∅, {a1, a2, a3, a4, a5, a6, a7, a8}) 

If c1 ≤ c2 holds, then c1 is said to be a subconcept of c2 and c2, a superconcept of c1. For 
example, since ({o2, o4}, {a3, a4, a5}) ≤ ({o2, o3, o4}, {a3, a4}), then c4 is a subconcept of 
c2 and c2 is a superconcept of c4.  

The set of all concepts in Table 3 is called a concept lattice. It is graphically 
represented as a directed acyclic graph, where a node represents a concept and an edge 
denotes a superconcept/subconcept relation. Figure 36 shows the concept lattice for the 
relation in Table 2. The most general concept, denoted by T, is called the top element. 
The most special concept, denoted by ⊥, is called the bottom element.  
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The concept lattice of Figure 36 can be visualized in a more readable manner by 
marking a graph node with an attribute a ∈ A, i.e., μ(a), if it represents the most 
general concept that has a in its intent. Analogously, a node will be marked with an 
object o ∈ O, i.e., γ(o), if it represents the most special concept which has o in its 
extent. The resulting representation is called a sparse representation of the lattice. 
Figure 37 displays the equivalent sparse representation of Figure 36.  

C3 C4 C5

C2

C6

T C1

⊥ C7

C3 C4 C5

C2

C6

T C1

⊥ C7  

Figure 36. Concept Lattice 
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Figure 37. Sparse Representation 
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In a sparse representation, the content of a node N can be derived as follows 
[69]:  

• The objects of N are all objects at and below N.  

• The attributes of N are all attributes at and above N.  

To derive scenario-method relationships using concept analysis, one has to 
define a formal context. In the present case, methods will be considered 
objects and scenarios, attributes. As a result, a pair (method s, scenario S) is 
in relation R if s is executed when S is performed [69].  

The process of locating features using concept analysis is as follows [69]:  

1. The set of relevant features is identified F = {f1 … fn} 

2. The scenarios A = {S1 … Sq} are identified so that the features in F are 
covered.  

3. Execution traces are generated so that all required methods O = {S1 … Sq} 
for each scenario are identified.  

4. The relation table R is created so that (S1, s1), (S1, s2), …, (Sq, sp) ∈ R 

5. Concept analysis is performed for (O, A, R) 

Concept analysis applied to the formal context yields a lattice from which the 
following relationships can be derived [69]:  

• A method s is required for all scenarios at and above γ(s).  

• A scenario S requires all methods at and below μ(S).  

• A method s is specific to exactly one scenario S if S is the only scenario 
on all paths from γ(s) to the top element.  

• A scenario S is specific to exactly one method s if s is the only method on 
all paths from μ(S) to the bottom element.  

• Scenarios to which two methods s1 and s2 jointly contribute can be 
identified by γ(s1) ∨ γ(s2). In the lattice, it is the closest common node 
toward the top element starting at the nodes to which s1 and s2 are 
attached. All scenarios at and above this common node are those jointly 
implemented by s1 and s2.  

• Methods jointly required for two scenarios S1 and S2 are described by 
μ(S1) ∧ μ(S2). In the lattice, it is the closest common node towards the 
bottom element starting at the nodes to which S1 and S2 are attached. All 
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methods at and below this common node are those jointly required for S1 
and S2. 

• Methods required for all scenarios can be found at the bottom element.  

• Scenarios that require all methods can be found at the top element.  

• If γ(s1) < γ(s2) holds for two methods s1 and s2, then method s2 is more 
specific with respect to the given scenario than method s1 because s1 
contributes not just to the features for which s2 contributes, but also to 
other features.  

• If μ(S1) < μ(S2) holds for two scenarios S1 and S2, then scenario S2 is 
based on scenario S1 because if S2 is executed, all methods in the extent of 
μ(S1) need also to be executed.  

Based on the relationships derived from the concept lattice, a decision can be 
taken to analyze only a subset of the original features in depth due to the 
additional dependencies that concept analysis could reveal. All the methods 
required for these features form a starting point for further static analyses 
[69].  
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